images (7).jpgimages.jpgimages (4).jpgassets_LARGE_t_420_54121524.JPGimages (1).jpgΑντίγραφο από find the word1.jpg3245599.jpgimages (9).jpgimages (5).jpgimages (8).jpgimages (2).jpgimages (3).jpgimages (6).jpg

Πιθανότητες στο ΚΙΝΟ

 

Ήρθε η ώρα να μιλήσουμε για την νέα «μάστιγα» των τυχερών παιγνίων. Και μιλάω προφανώς για το ΚΙΝΟ που πολύς κόσμος έχει εθιστεί. Οι λόγοι είναι λίγο προφανείς. Συνεχείς κληρώσεις κάθε πέντε λεπτά, θεωρητικά εύκολα κέρδη, μικρό κόστος συμμετοχής και πάει λέγοντας…

Είναι όμως δίκαιο σαν παιχνίδι; Μας αποφέρει  εύκολα κέρδη; Και τελικά αξίζει να ποντάρουμε εκεί τα χρήματα μας;



 

 

 Καταρχήν να ορίσουμε λίγο το παιχνίδι μας. Από έναν ηλεκτρονικό πίνακα που περιέχει 80 αριθμούς ένας τυχαίος (ή όχι για πολλούς) αλγόριθμος επιλέγει 20 νούμερα. Από την πλευρά μας μπορούμε να επιλέξουμε από 1 έως 12 αριθμούς με σκοπό όσο περισσότερα νούμερα «πετύχω» να αυξήσω τα κέρδη μου.

Το τι κερδίζω σε κάθε περίπτωση φαίνεται στον παρακάτω πίνακα όπως μας δίνετε από τον ιστότοπο του ΟΠΑΠ.

Ακούγονται καλές αποδόσεις, ειδικά στις υψηλές κατηγορίες  , αλλά το πρόβλημα μας είναι κατά πόσο είναι εύκολο να πετύχω τους αριθμούς και επίσης αν πληρώνομαι δίκαια με βάση τις πιθανότητες που παίζω.

Καταρχήν λοιπόν να δούμε πως θα υπολογίζουμε τις πιθανότητες να κερδίσω.  Να θυμίσουμε μόνο πως θα μετράω συνδυασμούς : Έχουμε δει και παλιότερα ότι αν θέλω  να μετρήσω πόσες διαφορετικές  χ-αδες υπάρχουν από ψ αριθμούς χρησιμοποιώ τον τύπο (ψ ανά χ) = ψ!/χ!*(ψ-χ)! όπου ! είναι φυσικά το παραγοντικό όπου ορίζεται ως χ!=1*2*3*4*…*χ-1*χ  . Πχ αν θέλω 5 αριθμούς να τους χωρίσω σε 3-αδες αν βάλω όπου ψ=5 και χ=3 μου δίνει (5 ανά 3)= 5!/3!*2!= 1*2*3*4*5/1*2*3*1*2= 120/12=10 διαφορετικές  τριάδες λοιπόν από 5 νούμερα. Δοκιμάστε το δια του λόγου το αληθές.

Άρα αφού επιλέγονται 20 αριθμοί σε κάθε κλήρωση από 80 πιθανούς οι διαφορετικές 20-αδες που μπορούν να εμφανιστούν είναι (80 ανά 20) = 80!/20!*60! = 3.535.316.142.212.174.320. Τρομερό νούμερο έτσι? Μία ζωή να παίζετε ΚΙΝΟ είναι σχεδόν βέβαιο ότι δεν θα δείτε την ίδια 20-αδα να εμφανίζεται δύο φορές.

Έστω τώρα ότι θα επιλέξω ψ αριθμούς και θέλω να πετύχω την πιθανότητα να πιάσω χ από αυτούς.

Ο τύπος που μας δίνει την πιθανότητα Ρ(ψ,χ) = (ψ ανά χ)*(80-ψ ανά 20-χ)/ (80 ανά 20). Δηλαδή αφού είναι δεσμευμένη πιθανότητα θα θέλω το πλήθος των περιπτώσεων να πετύχω από τους ψ που διάλεξα τους χ, επί το πλήθος των 80 –ψ που δεν διάλεξα να εμφανιστούν οι αριθμοί που δεν έχω επιλέξει , ως προς όλες τις πιθανές εικοσάδες.  

Για να δούμε κάποια ενδιαφέροντα παραδείγματα :

Πχ 1. Έστω ότι επιλέγω έναν αριθμό και ποια η πιθανότητα να τον πετύχω. Άρα ψ=1 και χ=1. Τότε

Ρ(1,1)= (1 ανά 1)*(79 ανά 19) / (80 ανά 20) = {(1!/1!*0!)*(79!/19!*60!)}/(80!/20!*60!)=

20!*60!*79!/19!*60!*80!= ¼ μετά από τις πράξεις. Άρα 25% πιθανότητα να συμβεί.

Πχ 2. Έστω ότι επιλέγω 8 αριθμούς και θέλω να υπολογίσω την πιθανότητα να πετύχω τους τρεις από αυτούς.

Ρ(8,3)= (8 ανά 3)·(72 ανά 17)/(80 ανά 20) = 32769072/152565985 = 21,47 %

 

Πάμε τώρα στο επόμενο κομμάτι. Κατά πόσο είναι δίκαιο σαν παιχνίδι. Στο πρώτο μου παράδειγμα βρήκα ότι παίζοντας έναν μόνο αριθμό έχω πιθανότητα ¼ να τον επιτύχω. Όπως έχουμε πει και στα υπόλοιπα παίγνια που μελετήσαμε θα πρέπει να με πληρώσει 4 φορές τα λεφτά μου για να θεωρείται δίκαιο. Αντιθέτως όμως βλέποντας τον πίνακα με τα κέρδη βλέπω ότι μου δίνει συντελεστή κέρδους 2,5. Μου κρατά δηλαδή 1,5 στα 4 ένα ποσοστό 37,5 %. Την λεγόμενη γκανιότα στα τυχερά παιχνίδια. Υπολογίζοντας σε όλες τις κατηγορίες τα ποσοστά αυτά  κινούνται σε ένα ποσοστό της τάξης του 31%. Δεν περιμέναμε βέβαια να πληρωθούμε ακριβώς τα χρήματα μας άλλα το ποσοστό κέρδους είναι μικρό. Για να το καταλάβουμε καλύτερα σκεφτείτε ότι ο ΟΠΑΠ ότι αριθμοί να παιχτούν, σε οποιουσδήποτε συνδυασμούς από τα συνολικά χρήματα που θα παιχτούν θα κρατήσει το 31%. Αναλογικά σε πληθυσμό μίας χώρας που παίζει μανιωδώς μιλάμε για τεράστια χρηματικά ποσά.

Ένα τελευταίο παράδοξο για να κλείσω αυτήν την ενότητα είναι το ποιες κατηγορίες πληρώνονται. Τι εννοώ: Έστω ότι επιλέξω να παίξω 12 νούμερα να επιτύχω τα 5 από αυτά. Υπολογίζοντας με βάση τα παραπάνω η πιθανότητα να γίνει αυτό είναι 9,93% περίπου ή σχεδόν 1 στις 10. Σε ένα λογικό παιχνίδι θα περίμενα να πάρω αν όχι 10 φορές τα λεφτά μου σίγουρα κάτι καλό. Ο ΟΠΑΠ τι με πληρώνει; ΤΙΠΟΤΑ!!! Θεωρεί ότι είναι εύκολο να συμβεί και δεν αξίζει να σε πληρώσει. Αντίστοιχα υπάρχουν και άλλα παραδείγματα σε άλλες κατηγορίες απλά επέλεξα ένα τυχαία.

 

Τέλος να σας δώσουμε ένα πίνακα με αθροιστικά όλες τις πιθανότητες σε κάθε κατηγορία για να γνωρίζετε με τι πιθανότητες αγωνίζεστε.

 Αν και μετά από αυτό συνεχίζεται να θέλετε να παίζετε ας σας δώσουμε κάποιες συμβουλές:

Τις μεγαλύτερες πιθανότητες επιτυχίας τις έχουμε αν επιλέγουμε 2 αριθμούς  με 43,98% έπειτα 4 αριθμούς με 25,89%, μετά 1 αριθμό με 25% όπως είδαμε και τέλος 7 αριθμούς με 23,65%

Τα μεγαλύτερα όμως επιστρεφόμενα κέρδη τα βρίσκω στις κατηγορίες των 7 αριθμών με 69,96% και των 4 με 69,02%.

Οπότε καλύτερα να επιλέγετε από αυτές τις κατηγορίες και πάντα παίζοντας με σύνεση χωρίς υπερβολές. Το τι αριθμούς θα επιλέγετε (σειρές, κάθετους, γεωμετρικά σχήματα ή οτιδήποτε άλλο ) είναι στο χέρι σας και μάλλον δεν υπάρχει κάποιο κόλπο. Σωστά;

                                                 

 


Σχόλια   

 
0 #69 1 2 3 5 7 11 13 17.. 15-01-2016 17:37
Παραθέτοντας teo13:
παιζεις 2 αριθμους με την πιθανοτητα να πιασεις τον ενα στο 38% δηλαδη καθε 2,6 κληρωσεις κερδιζεις . Την πρωτη βαζεις χ ποσο αν το χασεις παιζεις στη δευτερη χ+(χ/2) αν το χασεις παιζεις την επομενη που λογικα θα κερδισεις 2χ+(χ/2) και βγαζεις κερδος χ σε περιπτωση που κερδισεις απο την πρωτη εχεις κερδος χ ενω στην δευτερη το κερδος σου ειναι χ/2 . Ευνοητο ειναι οτι αν κερδισεις πριν την τριτη κληρωση ξαναρχιζεις απο την αρχη το συστημα


τετοιες στρατηγικες, οπως και του 2πλασιασμου σε περιπτωση αποτυχιας ειναι πολυ επιφοβες για τους παιχτες και προυποθετουν αρκετα καλη μπανγκα με χρηματα. γιατι οπως ξερεις μπορει οι πιθανοτητες εμφανισης να ειναι 38% αλλα μπορει να μην εμφανιστου μεσα στη μερα οι αριθμοι που διαλεγει ο παιχτης ή ακομη χειροτερα...
Παράθεση
 
 
0 #68 kallis 13-01-2016 11:57
#nklari Τι εννοεις?Γινε πιο σαφης.Πως βγαινει το 6000 και τα αλλα ποσα?Παντως αν και δεν το υπολογισα για 7 αριθμους νομιζω οτι δεν "κλεβει"ο ΟΠΑΠ με το bonus.Οση αποδοση-επιστρο φη χρηματων θα ειχαμε δηλ.αν παιζαμε χωρις bonus τοση εχουμε περιπου κ παιζοντας με bonus.Θα το υπολογισω και θα σου πω ακριβως γιατι κι εγω 7 αριθμους παιζω συνηθως.
Παράθεση
 
 
0 #67 nklari 12-01-2016 20:55
EAN PAIXO 7 NOUMERA ME KINO MPONOUS KAI TA PETYXO ME MPONOUS ANTI 4000 KERDIZO 6000 AN DEN PIASO TO BONOUS ANTI 4000 KERDIZO 2000
Παράθεση
 
 
0 #66 αntwnhs 20-12-2015 16:56
Παραθέτοντας Varonos:
Παίδες το καλύτερο είναι να παίξετε 4 νούμερα για 20 κληρώσεις... δεν μπορεί θα την βγάλει την τετράδα... θα έχετε δώσει 10 ευρώ και θα πάρετε 50 ευρώ πίσω.... 40 ευρώ κέρδος... καλό δεν είναι για ΚΙΝΟ;;;

ta exeis parei esy
Παράθεση
 
 
+1 #65 αntwnhs 20-12-2015 16:53
pontaroyn stin elpida mas ta lamogia
Παράθεση
 
 
0 #64 Kallis 12-12-2015 12:00
# kontoleon Νομιζω δεν εχει μεγαλη μεγαλη διαφορα η επιστροφη στον παικτη με το κινο bonus.Οσον αφορα για ενα και δυο αριθμους που το εχω υπολογισει εχει ως εξης:
Για ενα αριθμο ειναι ακριβως ιδια η επιστροφη. Αν παιξω απο 1 Ευρω 80 φορες χωρις κινο Βοnus θα κερδισω τις 20 φορες.Θα παρω δηλ. 20*2.5=50 ευρω.

Αν παιξω με κινο Bonus θα κερδισω τις 19 φορες με αποδοση 1.25 και μια φορα με αποδοση 26.25

Θα παρω δηλ. (19*1.25)+26.25 =50. Το ιδο ακριβως.

Με 2 αριθμους χωρις το bonus υπολογισα οτι παιρνω επιστρεφόμενα κέρδη 68,03% και με bonus 67.80%. Μικρη διαφορα.Ελπιζω και στις αλλες κατηγοριες μικρη να ειναι η διαφορα.
Παράθεση
 
 
-3 #63 teo13 04-12-2015 17:38
παιζεις 2 αριθμους με την πιθανοτητα να πιασεις τον ενα στο 38% δηλαδη καθε 2,6 κληρωσεις κερδιζεις . Την πρωτη βαζεις χ ποσο αν το χασεις παιζεις στη δευτερη χ+(χ/2) αν το χασεις παιζεις την επομενη που λογικα θα κερδισεις 2χ+(χ/2) και βγαζεις κερδος χ σε περιπτωση που κερδισεις απο την πρωτη εχεις κερδος χ ενω στην δευτερη το κερδος σου ειναι χ/2 . Ευνοητο ειναι οτι αν κερδισεις πριν την τριτη κληρωση ξαναρχιζεις απο την αρχη το συστημα
Παράθεση
 
 
0 #62 kontoleon 29-11-2015 10:34
Εχω την εντύπωση ότι η επιστροφή στον παίχτη είναι πολύ μικρότερη με το kino μπόνους.

Δεν το έχω παίξει για να καταλάβω πως ακριβός λειτουργεί. Αν π.χ παίξεις 1 νούμερο και το πετύχεις πέρνεις 26,25Ε αλλά αν πιάσεις ένα απο τα άλλα 19 πέρνεις μόνο 1,25? εαν ναι τότε παίρνεις επιστροφή εκεί 50%.Αν μου αναλύσει κάποιος πόσα κερδίσεις αν πιάσω τον συνδιασμό, αλλά χάσω το μπόνους θα πώ αναλυτικά τι κερδίζεις.
Παράθεση
 
 
+1 #61 Kokorelis kostas 19-11-2015 19:05
Αμα μπορουσατε να υπολογισετε τις πιθανοτητες με το κινο bonus θα το εκτιμουσα....ευ χαριστω..
Παράθεση
 
 
-3 #60 Αριστος 12-11-2015 13:02
πολύ σωστά το εχεις αναλύσει, όσο ποιο πολύ παίζεις τόσο ποιο πολύ χάνεις... 30% και πανω περνει ο οπαπ... οπως κσι στα αλλα παιχνίδια, εξωφρενικο νούμερο, βγαίνει προσπαθώντας να καλύψει την περίπτωση που κάποιος θα το αναλύσει και θα φτιάξει σύστημα ωστε να μην μπορεί να κερδίσει ποτές...
Παράθεση
 

Προσθήκη νέου σχολίου

Κωδικός ασφαλείας
Ανανέωση